17 research outputs found

    A Comparison of Metrics and Algorithms for Fiber Clustering

    Get PDF
    International audienceDiffusion-weighted Magnetic Resonance Imaging (dMRI) can unveil the microstructure of the brain white matter. The analysis of the anisotropy observed in the dMRI contrast with tractography methods can help to understand the pattern of connections between brain regions and characterize neurological diseases. Because of the amount of information produced by such analyses and the errors carried by the reconstruction step, it is necessary to simplify this output. Clustering algorithms can be used to group samples that are similar according to a given metric. We propose to explore the well-known clustering algorithm k-means and a recently available one, QuickBundles [1]. We propose an efficient procedure to associate k-means with Point Density Model, a recently proposed metric to analyze geometric structures. We analyze the performance and usability of these algorithms on manually labeled data and a database a 10 subjects

    Joint T1 and brain fiber diffeomorphic registration using the demons

    Get PDF
    International audienceImage registration is undoubtedly one of the most active areas of research in medical imaging. Within inter-individual comparison, registration should align images as well as cortical and external structures such as sulcal lines and fibers. While using image-based registration[1], neural fibers appear uniformly white giving no information to the registration. Tensor-based registration was recently proposed to improve white-matter alignment[2,3], however misregistration may also persist in regions where the tensor field appears uniform[4]. We propose an hybrid approach by extending the Diffeomorphic Demons(D)[5] registration to incorporate geometric constrains. Combining the deformation field induce by the image and the geometry, we define a mathematically sound framework to jointly register images and geometric descriptors such as fibers or sulcal lines

    VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis

    Full text link
    We present a data-driven generative framework for synthesizing blood vessel 3D geometry. This is a challenging task due to the complexity of vascular systems, which are highly variating in shape, size, and structure. Existing model-based methods provide some degree of control and variation in the structures produced, but fail to capture the diversity of actual anatomical data. We developed VesselVAE, a recursive variational Neural Network that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the VesselVAE latent space can be sampled to generate new vessel geometries. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels. We achieve similarities of synthetic and real data for radius (.97), length (.95), and tortuosity (.96). By leveraging the power of deep neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes.Comment: Accepted for MICCAI 202

    VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis

    Get PDF
    We present a data-driven generative framework for synthesizing blood vessel 3D geometry. This is a challenging task due to the complexity of vascular systems, which are highly variating in shape, size, and structure. Existing model-based methods provide some degree of control and variation in the structures produced, but fail to capture the diversity of actual anatomical data. We developed VesselVAE, a recursive variational Neural Network that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the VesselVAE latent space can be sampled to generate new vessel geometries. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels. We achieve similarities of synthetic and real data for radius (.97), length (.95), and tortuosity (.96). By leveraging the power of deep neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes. Keywords: Vascular 3D model

    A Comparison of Metrics and Algorithms for Fiber Clustering

    Get PDF
    International audienceDiffusion-weighted Magnetic Resonance Imaging (dMRI) can unveil the microstructure of the brain white matter. The analysis of the anisotropy observed in the dMRI contrast with tractography methods can help to understand the pattern of connections between brain regions and characterize neurological diseases. Because of the amount of information produced by such analyses and the errors carried by the reconstruction step, it is necessary to simplify this output. Clustering algorithms can be used to group samples that are similar according to a given metric. We propose to explore the well-known clustering algorithm k-means and a recently available one, QuickBundles [1]. We propose an efficient procedure to associate k-means with Point Density Model, a recently proposed metric to analyze geometric structures. We analyze the performance and usability of these algorithms on manually labeled data and a database a 10 subjects

    Connectivity-informed Sparse Classifiers for fMRI Brain Decoding

    Get PDF
    International audienceIn recent years, sparse regularization has become a dominant means for handling the curse of dimensionality in functional magnetic resonance imaging (fMRI) based brain decoding problems. Enforcing sparsity alone, however, neglects the interactions between connected brain areas. Methods that additionally impose spatial smoothness would account for local but not long-range interactions. In this paper, we propose incorporating connectivity into sparse classifier learning so that both local and long-range connections can be jointly modeled. On real data, we demonstrate that integrating connectivity information inferred from diffusion tensor imaging (DTI) data provides higher classification accuracy and more interpretable classifier weight patterns than standard classifiers. Our results thus illustrate the benefits of adding neurologically-relevant priors in fMRI brain decoding

    Functional Alterations in Cerebellar Functional Connectivity in Anxiety Disorders

    Get PDF
    Adolescents with anxiety disorders exhibit excessive emotional and somatic arousal. Neuroimaging studies have shown abnormal cerebral cortical activation and connectivity in this patient population. The specific role of cerebellar output circuitry, specifically the dentate nuclei (DN), in adolescent anxiety disorders remains largely unexplored. Resting-state functional connectivity analyses have parcellated the DN, the major output nuclei of the cerebellum, into three functional territories (FTs) that include default-mode, salience-motor, and visual networks. The objective of this study was to understand whether FTs of the DN are implicated in adolescent anxiety disorders. Forty-one adolescents (mean age 15.19 ± 0.82, 26 females) with one or more anxiety disorders and 55 age- and gender-matched healthy controls completed resting-state fMRI scans and a self-report survey on anxiety symptoms. Seed-to-voxel functional connectivity analyses were performed using the FTs from DN parcellation. Brain connectivity metrics were then correlated with State-Trait Anxiety Inventory (STAI) measures within each group. Adolescents with an anxiety disorder showed significant hyperconnectivity between salience-motor DN FT and cerebral cortical salience-motor regions compared to controls. Salience-motor FT connectivity with cerebral cortical sensorimotor regions was significantly correlated with STAI-trait scores in HC (R2 = 0.41). Here, we report DN functional connectivity differences in adolescents diagnosed with anxiety, as well as in HC with variable degrees of anxiety traits. These observations highlight the relevance of DN as a potential clinical and sub-clinical marker of anxiety

    Image acquisition and quality assurance in the Boston Adolescent Neuroimaging of Depression and Anxiety study

    Get PDF
    The Connectomes Related to Human Diseases (CRHD) initiative was developed with the Human Connectome Project (HCP) to provide high-resolution, open-access, multi-modal MRI data to better understand the neural correlates of human disease. Here, we present an introduction to a CRHD project, the Boston Adolescent Neuroimaging of Depression and Anxiety (BANDA) study, which is collecting multimodal neuroimaging, clinical, and neuropsychological data from 225 adolescents (ages 14–17), 150 of whom are expected to have a diagnosis of depression and/or anxiety. Our transdiagnostic recruitment approach samples the full spectrum of depressed/anxious symptoms and their comorbidity, consistent with NIMH Research Domain Criteria (RDoC). We focused on an age range that is critical for brain development and for the onset of mental illness. This project sought to harmonize imaging sequences, hardware, and functional tasks with other HCP studies, although some changes were made to canonical HCP methods to accommodate our study population and questions. We present a thorough overview of our imaging sequences, hardware, and scanning protocol. We detail similarities and dif-ferences between this study and other HCP studies. We evaluate structural-, diffusion-, and functional-image-quality measures that may be influenced by clinical factors (e.g., disorder, symptomatology). Signal-to-noise and motion estimates from the first 140 adolescents suggest minimal influence of clinical factors on image quality. We anticipate enrollment of an additional 85 participants, most of whom are expected to have a diagnosis of anxiety and/or depression. Clinical and neuropsychological data from the first 140 participants are currently freely available through the National Institute of Mental Health Data Archive (NDA)

    Recalage Multi-modal des image du cerveau T1 et les descripteurs de trajectoires de la matière blanche

    No full text
    Brain image registration aims at reducing anatomical variability across subjects to create a common space for group analysis. Multi-modal approaches intend to minimize cortex shape variations along with internal structures, such as fiber bundles. These approaches require prior identification of the structures, which remains a challenging task in the absence of a complete reference atlas. We propose an extension of the Diffeomorphic Demons image registration to jointly register images and fiber bundles. In this thesis we analyze differents representations of the fiber bundles such as ordered points, clouds of points, Currents and Measures. Different distances are analyzed and implemented into the registration algorithm. To simplify white matter representation we also analyze, use and extend existing clustering algorithms. By extending the image registration to include geometric fiber bundles descriptors we hope to improve future analyses regarding both, grey and white matter. We demonstrate the efficacy of our algorithm by registering simultaneously T1 images and fiber bundles and compare results with a multi-modal T1+Fractional Anisotropy (FA) and a tensor-based registration algorithms and obtain superior performance with our approach. We provide preliminary evidence that our implementation improves the sensitivity of activation detection in fMRI group studies.Le recalage des images du cerveau vise à réduire la variabilité anatomique entre les differentes sujets, et à créer un espace commun pour l'analyse de groupe. Les approches multi-modales essaient de minimiser les variations de forme du cortex et des structures internes telles que des faisceaux de fibres nerveuses. Ces approches nécessitent une identification préalable de ces structures, ce qui s'avère une tâche difficile en l'absence d'un atlas complet de référence. Nous proposons une extension de l'algorithme de recalage difféomorphe des Démons pour recaler conjointement des images et des faisceaux de fibres. Dans cette thèse, nous analysons différentes représentations des faisceaux de fibres comme une séquence de points, un nuage de points, les courants et les mesures. Différentes distances sont analysées et étudiées dans l'algorithme de recalage. Pour simplifier la représentation de la matière blanche nous utilisons et étendons les algorithmes de classification existants. En étendant le recalage d'images afin d'ajouter des descripteurs de la géométrie des fibres nerveuses, nous espérons améliorer les futures analyses concernant les matières grise et blanche. Nous avons démontré l'efficacité de notre algorithme en recalant conjointement des images anatomiques pondérées en T1 et des faisceaux de fibres. Nous avons comparé nos résultats à des approches concurrentes, l'une multimodale s'appuyant sur l'anisotropie fractionnaire et la pondération T1, l'autre sur les tenseurs de diffusion, et obtenu de meilleures performances à l'aide de notre algorithme. Enfin, nous mettons en évidence sur des études de groupe en IRMf que notre méthodologie et notre implémentation apportent un gain en sensibilité de détection des activations cérébrales
    corecore